Homework 8

Due March 7th on paper at the beginning of class. Please let me know if you have a question or find a mistake. There are some hints on the second page.

1. Let $f(x)=x$ for $0<x<1$. For this problem use Fourier series in terms of sines and cosines.
(a) Let f_{1} be the odd extension of f with period 2 . Sketch f_{1} and find the first four nonzero terms of its Fourier series.
(b) Let f_{2} be the even extension of f with period 2 . Sketch f_{2} and find the first four nonzero terms of its Fourier series.
(c) Let f_{3} be the extension of f with period 1 . Sketch f_{3} and find the first four nonzero terms of its Fourier series.
(d) *This part is not to be handed in but is just for fun.* Notice how the speed at which the terms go to zero is related to the sizes of the jumps. You may enjoy taking various partial sums $S_{N}(x)$ and plotting $x-S_{N}(x)$ on Desmos to compare how well they do. The difference is significant even on intervals like $.4 \leq x \leq .6$ that stay well away from the endpoints. For instance, look at how many terms are needed for 1% error on such an interval.
2. Solve the heat equation $\partial_{t} u=\partial_{x}^{2} u+\partial_{y}^{2} u$ in the rectangle $R=(0,2) \times(0,3)$, subject to Dirichlet boundary conditions and initial condition $u(0, x, y)=1$. Show that the solution can be written in the form $u(t, x, y)=v(t, x) w(t, y)$, where v and w each solve a heat equation in an interval.
Again not to hand in but note that the same thing works if R is replaced by any domain (in any number of dimensions) which can be decomposed as a product, but not if the heat equation is replaced by the wave equation.

Hints:

The eigenfunctions you need to project onto are normalized versions of the following:

1. (a) $\sin (n \pi x)$, where n ranges over positive integers.
(b) $\cos (n \pi x)$, where n ranges over nonnegative integers.
(c) Both of the above sets, with π replaced by 2π.
2. $\sin (m \pi x / 2) \sin (n \pi y / 3)$, where m and n range over positive integers.

The series form of the solution of the heat equation is given in equation (8.3).

